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Abstract

A surprisingly small number of signalling pathways are used reiteratively during neural development,
eliciting very different responses depending on the cellular context. Thus, the way a neural cell
responds to a given signal is as important as the signal itself and this responsiveness, also called
competence, changes with time. Here we describe recent advances in elucidating the signalling
pathways that operate in brain development.

Introduction and context
One of the most formidable challenges in biology is to
understand the generative program underlying the
development of a functional nervous system and, in
the case of vertebrates, the astonishingly complex
structure of the brain. The neuroepithelium that will
make the brain and spinal cord is induced early in
development, partly through inhibition of anti-neuraliz-
ing signals. In vertebrates, the emerging epithelial sheet -
the neural plate - is then patterned coarsely along its
anteroposterior (AP, head-to-tail) and dorsoventral (DV,
back-to-belly) axes by gradients of secreted factors
(morphogens) that specify different regional neural
fates in a dose-dependent fashion. Subsequently, regio-
nal identities become stabilized through transcriptional
feedback and through the establishment of cell-tight
compartments. The neural plate rolls up and compacts to
form a neural tube that displays increasingly pronounced
bulges, constrictions and flexures - the first indication of
the morphological complexity of the central nervous
system (CNS) at later stages (Figure 1).

Local signalling centres are established within the
neuroepithelium, often along the boundaries between
compartments, which refine the pattern of neural
subdivisions by releasing diffusible signalling factors. A
surprisingly small set of signalling factors is employed
reiteratively throughout development, and different
populations of cells may respond to the same signal

very differently, a phenomenon called 'differential
cellular competence'. Eventually, neural identities
become determined when neural progenitors exit the
cell cycle and differentiate into mature neurons that form
dendrites and project axons to establish the complex
connectional architecture of the CNS. Understanding the
developmental history of cells in specific regions of the
emerging brain will provide us with more rational and
targeted strategies to produce these cells in a Petri dish
from embryonic stem cells.

The initial step in CNS development in vertebrates - the
induction of a neural plate from the embryonic ectoderm
- occurs early in embryogenesis before the onset of
gastrulation. In the 1990s the 'default model' for neural
induction was proposed: all ectodermal cells will
become neural unless they are exposed to epidermis-
inducing bone morphogenetic proteins (BMPs) [1–3].
Thus, neural fates are induced either by the mere absence
of BMP signals (by default) or by an active inhibition of
the BMP signalling pathway. Over the past 15 years, it
has been shown that embryos throughout the animal
kingdom produce inhibitory factors that sequester BMPs
in the extracellular space and relieve cells from their anti-
neuralizing effect, thereby inducing neural identity [4,5].

During gastrulation, a crude pattern is established within
the neural plate by gradients of signalling factors that
determine AP polarity (fibroblast growth factors (FGFs),
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retinoic acid, secreted signalling proteins of the Wnt
family) and mediolateral polarity (BMPs, members of
the Hedgehog family) by inducing the expression of
region-specific transcription factors in a dose-dependent
fashion [6–13]. In many cases, the borders between
domains of transcription factor expression are then
sharpened by the mutual repression of pairs of factors.
For example, the expression domains of the homeobox
genes Otx2 in the prospective midbrain and Gbx2 in the
anterior hindbrain region initially overlap [14], but
mutual repression between the two transcription factors
encoded by these genes results in a binary choice, with
cells exclusively expressing either Otx2 or Gbx2 [15–18].
Furthermore, cells in adjacent regions may start to
express different sets of surface molecules, resulting in
an enhanced affinity between cells within a region,
decreased affinity and miscibility with cells from
neighbouring regions, and the formation of a sharp

regional interface - similar to the formation of a phase
interface between oil and water [19].

Occasionally, a regional interface becomes a cell-tight
boundary that confines cells to lineage-restricted com-
partments; this is best exemplified in the hindbrain,
which consists of a series of compartments called
rhombomeres [19,20]. Apart from stabilizing emerging
regionalization, boundaries often appear to function as
local organizers, specialized cell populations that influ-
ence the development of their flanking regions by
secreting molecular signals [11,19,21]. For example, the
boundary between midbrain and hindbrain (MHB)
induces the tectum anteriorly and the cerebellum poster-
iorly by releasing FGF8 [9,11,16,18]. Thus, the themes of
(1) patterning by diffusible signalling factors, (2) mutual
repression of transcription factors and (3) boundary/
compartment formation are reiterated at multiple stages
of brain development, resulting in a progressively refined
subdivision of the neuroepithelium.

While the assignment of regional identities is under way,
the neuroepithelium undergoes a no less complex series
of morphological transformations. The neural plate rolls
up and its borders fuse to form a neural tube that
displays increasingly pronounced constrictions and
bulges (some of which correspond to the boundaries
and compartments discussed above) [19,22,23]. At
present, little is known about the molecular dynamics
underlying brain morphogenesis, but differential growth
is likely to be one of the driving forces, and some of the
signalling factors secreted by local organizers act as
growth factors in addition to their role in patterning.
Whereas AP patterning of the neural tube continues to be
under the influence of several discrete local organizers
(such as the MHB), DV patterning is regulated by two
continuous signalling centres that stretch along almost
the entire neural tube: the floor plate at the ventral
midline that controls ventral identity by secreting Sonic
hedgehog (Shh) [24–26] and the roof plate at the dorsal
midline that emits BMPs and Wnts [6,27,28].

Neural progenitors are kept in a proliferative state until,
at the onset of neurogenesis, their cell cycle lengthens
and both postmitotic neurons and radial glial cells are
produced. Basic helix-loop-helix transcription factors
such as NeuroD and the neurogenins, together with the
Notch signalling pathway, are key regulators of this
process [29,30]. Throughout the brain, neurons become
organized to form either nuclei (in the diencephalon,
tegmentum and brain stem) or layers (cortex, tectum and
cerebellum). In the cerebral cortex, layering is achieved
by the sequential radial (outward) migration of newborn
neurons that are generated in the ventricular zone.

Figure 1. Lateral view of embryonic vertebrate (chick) brain

Principal signalling centres are highlighted in green (floor plate, basal
forebrain, zona limitans intrathalamica (ZLI) - Shh expression), red (roof
plate - BMP and Wnt expression) and blue (midbrain-hindbrain boundary
(MHB), anterior neural ridge/commissural plate (ANR/CP) - FGF expres-
sion). Note that the pallial-subpallial boundary (PSB) and the boundaries
between rhombomeres in the hindbrain (HB) have also been suggested to
exert signalling functions. The notochord (light grey) is a non-neural
signalling centre that regulates ventral neural patterning. Di, diencephalon;
MB, midbrain; Tel, telencephalon.
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Once the basic architecture of the brain has been
established, some postmitotic neurons become redis-
tributed by tangential migratory processes. For example,
GABAergic neurons that originate in the basal forebrain
migrate dorsally into the cortex in mammals [31].
Finally, neurons form dendrites and project axons to
targets within the brain and in the periphery. Axons are
guided by extracellular cues that can act as attractants
(netrin and its receptor DCC) or as repellants (ephrins
and Eph receptors, netrin and its receptor UNC5,
semaphorins and plexin receptors, Slit and its receptor
Robo) [32–35]. Sensory input is often represented in an
orderly fashion in various brain structures. The best
example of such topographic mapping is the projection
pattern of retinal axons into the optic tectum, where the
two axes of the retina (nasal-temporal, ventral-dorsal)
correspond to projection targets along the caudal-rostral
and medial-lateral axes of the tectum, respectively
(Figure 2). This geometric organization is achieved, at
least in part, by the graded expression of ephrins within
the tectum and of Eph receptors on retinal axons [36,37].
It is likely that these gradients of expression are set up by
the gradients of signalling factors that pattern the
neuroepithelium at earlier stages, highlighting a direct
link between early patterning and functional brain
architecture.

Major recent advances
Neural induction
Support for the default model of neural induction has
recently come from experiments in frog embryos in
which the simultaneous depletion of three BMP inhibi-
tors resulted in the absence of a neural plate [38] while
the simultaneous depletion of three BMPs resulted in
massive neural induction [39]. At the same time,
however, experiments in chick suggested that prospective
neural cells require activation by FGFs before BMP
inhibition [9,40,41]. This is consistent with the results of
other groups who have demonstrated that BMP inhibi-
tion is required, but not sufficient, for neural plate
formation in frog and fish embryos [42–45].

Crucial steps in embryogenesis, such as neural induction,
are often governed by multiple parallel pathways,
providing a safety mechanism that ensures increased
fidelity in cellular decision-making. In addition to BMP
inhibition and FGF signalling, both activation and
inhibition of the Wnt pathway have also been implicated
in neural induction [46–49]. The De Robertis lab and
others have shown that BMP, FGF/MAP kinase and Wnt
pathways are all integrated at the level of Smad1
phosphorylation (Figure 3), providing an elegant expla-
nation for the neural-inducing and neural-inhibiting
activities of these pathways [46,50,51]. The integration

of three different pathways safeguards the formation of
neural cells in a spatially and temporally restricted
manner in the embryo. However, even the simultaneous
manipulation of BMP, FGF and Wnt signalling may not
be sufficient to induce neural tissue in all experimental
systems, suggesting the presence of other, as yet
unidentified, neural-inducing signals [45].

In both chick and frog, the FGF target gene churchill
(chch) was proposed to block BMP signalling by
encoding a zinc finger transcription factor that induced
the expression of the Smad inhibitor Sip1 [52]. However,
a recent structural analysis of Chch has indicated that the
protein is unlikely to bind to DNA directly, raising the
question of how Chch induces Sip1 - possibly by
interacting with another DNA-binding cofactor [53].

Patterning
In the 1930s, Otto Mangold proposed that the early
neural plate is already subdivided into multiple AP

Figure 2. Topographic mapping in the retinotectal pathway

(a) Axons originating from dorsal (D) aspects of the retina project into the
lateral (L) tectum (bright blue) whereas axons from the ventral (V)
retina project into the medial (M) tectum (dark blue). Nasal (N) retinal
axons target caudal (C) areas of the tectum (pink) whereas temporal (T)
ones target rostrally (R, red). (b) Simplified, vectorial depiction of
retinotectal projection patterns.
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domains [54]. This model was called into question by
many studies that found a high level of regional plasticity
within the neural plate, indicating that it is a relatively
naive sheet of cells. A recent fate-mapping study in
zebrafish has, however, revealed a high level of
determination within subregions of the neural plate
during gastrulation (in particular in the area of the
presumptive prethalamus) [55]. Analysis of the promo-
ter of a Xenopus orthologue of the Drosophila genecaudal,
which encodes a homeodomain transcription factor
expressed in the posterior neural plate, has revealed the
presence of multiple regulatory elements that are able to
integrate BMP, FGF and Wnt signals, providing evidence
for the idea that several pathways interact not only
during neural induction but also during the establish-
ment of the posterior CNS [56]. Anteriorly, the homeo-
box transcription factor Six3 protects forebrain identity
by repressing the posteriorizing activity of Wnt1 [57,58].

Local signalling centres are likely to release a secreted
signal in a more or less symmetrical fashion. Yet, the
response to the same signal on either side of the

signalling centre is often strikingly asymmetrical. For
example, why do cells on either side of theMHB interpret
the same signal, FGF8, differently by forming a tectum
anteriorly and a cerebellum posteriorly? A recent study
has highlighted a central role for the homeobox
transcription factor Irx2 in conferring competence upon
cells posterior to the MHB to form cerebellum in
response to FGF8 [59]. We and others were able to
show that the zona limitans intrathalamica (ZLI) in the
posterior forebrain is also a local signalling centre that
regulates thalamic development by emitting Shh. Irx3, a
close relative of the competence factor Irx2, is expressed
posterior to the ZLI and determines the 'thalamic
response' of the posterior cells to Shh [60]. The
expression domains of these competence factors are
established early in development, at neural plate stages,
linking the coarse pre-pattern that is set up during
gastrulation with the later refinement of this pattern. The
boundaries between hindbrain rhombomeres have also
been shown to exert signalling activity by producing
Wnts that regulate the pattern of neurogenesis within the
rhombomeres [61,62].

Two studies from the Partanen lab have shown that FGF
receptor signalling is essential not only for patterning in
the MHB area, but also for maintaining the integrity of
the MHB itself [63] and for promoting progenitor
proliferation [64]. These studies emphasize the multi-
functionality of secreted signalling factors.

Morphogenesis
Wnt proteins are able to activate two alternative
intracellular pathways. One is the 'canonical' Wnt
pathway that results in stabilization of b -catenin and
its translocation to the nucleus, where it associates with
various cofactors to activate the transcription of target
genes [65]. The other is a 'noncanonical' Wnt pathway
that interacts with the cytoskeleton independently of
transcription and regulates epithelial cell polarity
[66,67]. It has become increasingly clear that the
noncanonical branch of the Wnt pathway (activated by
Frizzled3 and Frizzled6) is required for the morphoge-
netic process of neural tube closure [68,69].

Neuronal phenotype
Postmitotic neurons acquire characteristic neurotrans-
mitter phenotypes depending on their gene-expression
profile. For example, Otx2, which acts as a pre-patterning
factor at earlier stages, promotes glutamatergic differ-
entiation and represses GABAergic differentiation in the
thalamus [70]. Similarly, somatosensory neurons in the
hindbrain are replaced by viscerosensory relay neurons
in mice lacking the transcription factor Lbx1 [71]. A
recent paper from the Briscoe lab [72] has shown that the

Figure 3. Integration of BMP, FGF and Wnt signalling at the level
of Smad1 during neural induction

(a) Anti-BMPs (such as Chordin and Noggin) prevent BMPs from binding to
their receptor complex; Smad1 remains inactive; neural identity is induced.
(b) Binding of a ligand to a BMP receptor complex results in transpho-
sphorylation of the BMP type I receptor by the BMP type II receptor and the
subsequent phosphorylation of Smad1 in its carboxy-terminal MH2 domain;
this activated Smad1 forms a complex with co-Smads, translocates to the
nucleus and blocks neural identity. (c) Activation of the mitogen-activated
protein kinase (MAPK) pathway by FGF (or by hepatocyte growth factor
(HGF) or insulin-like growth factor (IGF)) signalling results in phosphor-
ylation of Smad1 in its linker region (yellow); this phosphorylation blocks
the anti-neuralizing effect of activated Smad1. (d) Phosphorylation in its
linker region primes Smad1 for phosphorylation by glycogen synthase kinase 3
(GSK3); doubly phosphorylated Smad1 is then targeted for degradation in the
proteasome.
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mutual repression of transcription factors is not only
important for the establishment of neuroepithelial
subregions in the hindbrain, but also determines the
decision between a visceral motor neuron and a
serotonergic neuron fate. Thus, early brain patterning
and later neuronal function are inherently linked by the
characteristic gene-expression profile of a given brain
area.

Axon guidance and map formation
A host of novel molecular players and interactions in
axon guidance have been identified [73,74], with
mutagenesis screens in zebrafish proving a particularly
useful tool for such gene-mining projects [75]. As with
patterning and the establishment of neuronal pheno-
types, the expression or absence of single transcription
factors can have a profound influence on axon projec-
tions and the formation of functional synapses [76].
Recently, the formation of the facial somatosensory map
was shown to depend on the Hox-gene-regulated
rhombomeric organization of the hindbrain, providing
yet another example of a direct link between early brain
regionalization and the establishment of functional
architecture [77].

Hodge et al. [78] have shown that the regionalized
expression of BMP4 in facial structures of the mouse
embryo regulates gene expression in trigeminal sensory
neurons and, as a consequence, influences the spatial
projection pattern of these neurons. This study indicates
that target-derived signals play a crucial role in shaping
neuronal architecture.

Future directions
Neural induction is still a hotly debated topic, but it
seems likely that FGFs and other signals mediate the
earliest steps of this process and that the inhibition of
BMPs (probably in combination with Wnt inhibitors
and ongoing FGF signalling) serves to stabilize the early-
induced neural fate [79]. It has become increasingly clear
that secreted signalling factors perform different func-
tions at different developmental stages, not only
regulating patterning [56,60,63,64,80], but also prolif-
eration [64], the acquisition of neuronal phenotypes
[64,78] and even axon guidance [6,8,9,81–83].

Our deepening knowledge of the molecular processes
that establish specific subregions of the brain allows us
to mimic these steps in a Petri dish in order to drive
embryonic stem cells along certain predictable develop-
mental routes. So far, motor neurons [84], telencephalic
precursors [85], dopaminergic midbrain neurons [86]
and cerebellar granule cells [87] have been generated in
vitro and in some cases have been shown to integrate

successfully into the corresponding structures of a
developing brain. Thus, basic research in developmental
neurobiology has opened up new avenues and can offer
more specific, target-oriented approaches in producing
stem cells for therapeutic purposes.
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